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ABSTRACT 
 

We reviewed the cognitive task performance of children and adolescents with developmental and 
attentional issues, before and after participation in the Brain Balance

®
 (BB) program. The program 

consisted of three 1-hour sessions/week (sensorimotor stimulation and academic activities) with 
other multimodal activities, for 3 months. Participants were compared to a control group that had 
the same underlying demographic and phenotypical features but did not yet complete the program 
(participated on average for 27 days). For all ages (4-6 and 7+ years), we found a significant main 
effect of group, such that BB groups improved overall more than controls (CTRLs). More 
specifically, BB groups improved on all cognitive tests (three tests for ages 4-6 years; 12 tests for 
ages 7+ years), whereas CTRLs only improved on one test. These data support the potential of 
multimodal training programs toward the overarching goal of improving cognitive performance in 
children with developmental and attentional difficulties. 
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1. INTRODUCTION 
 

A child’s cognitive functioning is a reflection of 
his/her ability to perform higher-level mental 
processes that engage specific mechanisms 
associated with attention, learning, memory and 
reasoning. These cognitive functions allow 
children to interact with their environment in a 
goal-directed manner and shift behavior in 
response to changing environmental demands. 
Importantly, childhood cognitive skills are also 
thought to influence and be predictive of 
academic performance, including math, reading 
and writing [1-6].  
 

Various aspects of cognitive functioning are 
known to be negatively affected in children with 
attention-deficit/hyperactivity disorder (ADHD) 
and even in children with subthreshold symptoms 
of ADHD that do not meet the full diagnostic 
criteria [7,8]. For example, children with ADHD 
show impairments in sustained attention, 
response inhibition, processing speed, and 
working memory, compared with typically 
developing children [8,9,10,11]. Studies suggest 
that it is the ADHD symptoms and underlying 
cognitive deficits — not comorbid conduct 
problems — that are at the root of poor academic 
performance commonly observed in children with 
attentional impairments [12,13,4].  
 
Although genes exert substantial influence on the 
development of brain networks underlying 
cognitive processes such as attention [14], 
evidence shows that cognitive difficulties can be 
improved. For example, attention, working 
memory, and inhibitory control can be altered by 
training and practice, especially with certain 
types of video games, computer-based 
exercises, and repetition of specific tasks [15-19]. 
Attention has also been shown to improve 
following meditation training [20] and physical 
exercise [21]. And childhood cognitive 
development in general shows considerable 
positive effects from high-quality early education 
[22] and lifestyle factors such as nutrition [23]. 
Collectively, these studies show that multiple 
factors can be employed to enhance attention 
and other aspects of cognitive functioning, 
suggesting the importance of holistic integrated 
approaches to support cognitive development 
during childhood and adolescence [24].  
 
The purpose of this study is to retrospectively 
review data on the cognitive task performance of 
children and adolescents with developmental and 

cognitive difficulties, including attentional issues, 
before and after participation in an integrative, 
multimodal training program (Brain Balance® 
program) for 3 months. This group was 
compared to a control group that had all of the 
same underlying demographic and phenotypical 
features, but participated in the program for a 
significantly shorter duration of time. The Brain 
Balance program is a center-based program that 
aims to integrate sensory input and strengthen 
motor skills through regular frequency and 
duration of multimodal activities that target 
sensory functioning, motor skills, and exercises 
to address retained primitive reflexes, along with 
academic engagement, nutritional support, and 
complementary home-based exercises. The 
specific areas of cognitive performance 
examined before and after program participation 
were in concentration, verbal ability, memory, 
and reasoning.    
 

2. METHODS 
 

2.1 Design 
 

Cognitive testing was administered before and 
after the Brain Balance program in order to look 
for changes in cognitive functioning associated 
with Brain Balance training, and to examine 
whether any particular sets of tests showed Brain 
Balance–specific improvement. Testing took 
place via the Cambridge Brain Sciences (CBS) 
web-based testing platform, which has been 
used for numerous large-scale studies of 
cognition [25-29]. At each testing point 
(before/after), participants completed a CBS 
assessment consisting of a collection of cognitive 
tests (see Cognitive Test Batteries for more 
detail). Participants completed one of two 
batteries depending on their age — participants 
aged 4-6 years completed a shorter and more 
age-appropriate set of cognitive tests than 
participants aged 7 years and older. 
 

A subset of participants who completed a second 
CBS assessment prior to completing the Brain 
Balance program comprised a control group. 
That is, the only difference between the Brain 
Balance and control groups was the time 
between cognitive assessments (see participants 
below).  
 

2.2 Inclusion Criteria 
 

Prior to enrolling in the Brain Balance program, 
prospective students were assessed at Brain 
Balance centers by trained technicians who had 
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completed a progression of training in the 
centers’ protocols. These technicians were 
required to pass all station certifications and be 
approved while being shadowed by a trainer. 
Students who were eligible for enrollment in the 
Brain Balance program did not have any known 
genetic disorders and needed to demonstrate a 
developmental readiness for the program. 
Readiness was defined as the ability to engage 
with instructors and follow a one-step direction, 
to attempt the tasks requested, and to continue 
to work throughout the duration of the 
assessment. Re-direction and repetition of 
instructions both visually and verbally were 
allowed in our definition of readiness. The 
students must also have tested below age-
appropriate levels, as assessed by widely used 
functional tests measuring a student’s abilities in 
the following categories: fine motor skills as 
assessed by the Purdue Peg Board [30]; body 
coordination, timing, and strength as assessed 
by the Presidential Fitness Test [31]; interaural 
asymmetry as assessed by the dichotic listening 
test [32]; and visual reading fluency as assessed 
by the Visagraph Reading Plus® tool [33]; as 
well as proprioception, balance, and vestibular 
function; auditory and visual processing; and eye 
coordination and movements. Enrolled children 
then participated in the Brain Balance program, 
as described in more detail in the Training 
Program section. 
 

2.3 Participants 
 

In the CBS database, cognitive test data were 
found for 12,317 Brain Balance participants who 
had been enrolled at Brain Balance center 
locations across the United States. After 
removing assessments that had missing test 
scores (incomplete assessments), 10,620 
participants remained. Subjects with reported 
ages of younger than 3 years or older than 18 
years were removed, leaving 9,914 datasets. 
Next, participants who completed the appropriate 
CBS battery (i.e., a 3-task battery for 4- to 6-
year-olds and a 12-task battery for 7+ year-olds) 
more than once (total N = 598) were split into 
four groups: 1) a Brain Balance treatment group 
of 7+ year-olds (BB 7+; N = 374); 2) a control 
group of 7+ year-olds (CTRL 7+; N = 79); 3) a 
Brain Balance treatment group of 4- to 6-year-
olds (BB 4-6; N = 104); and 4) a control group of 
4- to 6-year-olds (CTRL 4-6; N = 41). Summaries 
of the age and gender composition for each 
group are shown in Table 1. Two-tailed (Welch’s) 
t-tests indicated that age did not differ 
significantly between BB and CTRL groups for 4-

6 year-olds (t(46.71) = 0.52, p = 0.60) or 7+ year-
olds (t(123.74) = 0.04, p = 0.97). Similarly, chi-
squared tests revealed no differences in the 
proportion of males and females between groups 
for 4-6 year-olds (

2
(1) = 1.37, p = 0.24) or 7+ 

year-olds (
2
(1) = 0.002, p = 0.96). As expected, 

there was a significant difference between BB 
and CTRL groups, for both age groups, in the 
average time between the first and second 
assessments (4-6 years: t(114.25) = 24.50, p < 
0.001; 7+ years: t(324.24) = 41.00, p < 0.001), such 
that BB participants had a much longer period of 
time between assessments (Table 1). 

 
2.4 Training Program 
 
The Brain Balance program consisted of three in-
center sessions per week (for 3 months), with 
each session lasting 1 hour (45 minutes of 
sensorimotor stimulation and a 15-minute 
academic component focused on literacy and 
listening activities), along with other multimodal 
activities targeting the areas described in the list 
below. This training program protocol has 
previously been described in detail in Jackson & 
Robertson [34].  The program stations consisted 
of the following key pieces:  

 
 Passive sensory stimulation in the form of 

tactile, olfactory, visual, and auditory 
stimulation [35].  

 Exercises targeting primitive and postural 
reflexes [36]. 

 Core muscle exercises [37]. 
 Proprioceptive and balance training [38].  
 Vestibular exercises, including rotational, 

translational, and anterior-to-posterior 
movements. 

 Fine motor activities, including the palmar 
grasp reflex and the Purdue Peg Board 
[30].  

 Rhythm and timing exercises, including 
whole-body coordination activities and use 
of the Interactive Metronome® [39]. 

 Activities that aim to enhance auditory and 
visual processing, as well as coordination 
and endurance of eye movements [40;41].  

 
Parents were also asked to assist their children 
in completing daily exercises at home and were 
given nutritional guidance throughout the 
duration of the program. The home exercises 
consisted of 0-8 primitive reflexes, physical 
fitness activities (push-ups and sit-ups), and eye 
strengthening exercises. 



 
 
 
 

Jackson and Wild; JAMMR, 33(6): 27-41, 2021; Article no.JAMMR.66439 
 
 

 
30 

 

Table 1. Age and gender breakdown and average duration between 1
st

 and 2
nd

 cognitive 
assessments, for each group 

 
Group N     Age (years)      Gender Days between assessments 

Mean SD Male % Female % Mean SD 
BB 7+ 374 11 3 64.9 35.1 165.10 47.75 
CTRL 7+ 79 11 3.3 64.4 35.6 32.55 17.42 
BB 4-6 104 5.4 0.7 79.5 20.5 160.95 47.98 
CTRL 4-6 41 5.3 0.6 65.4 34.6 20.46 15.07 

Abbreviations: BB, Brain Balance treatment group; CTRL, control; N, sample size; SD, standard deviation 
 
2.5 Cognitive Test Batteries 
 
Cognitive test batteries were administered at 
Brain Balance centers with trained staff members 
overseeing the process. All participants 
completed the initial tests prior to enrolling in the 
Brain Balance program. Upon completion of the 
program, participants returned to the Brain 
Balance center to complete the tests again, 
based on their schedule for availability. There 
were variations in the timing of test 
administration, which stemmed from: (1) 
participants’ personal schedules for availability; 
and (2) some Brain Balance centers 
independently choosing when to administer tests.  
 
Participants in the two age groups completed 
different, though overlapping, sets of cognitive 
tests. Participants in the younger age group (4-6 
years) completed three CBS tasks, whereas 
participants in the older age group (7 years and 
older) completed 12 CBS tasks. Detailed 
descriptions of these tasks (including 
screenshots and test-retest reliability) can be 
found in the supplementary materials of Wild et 
al [29]. Briefly, the following were the tasks used: 
1) Spatial Span (short-term memory); 2) Monkey 
Ladder (visuospatial working memory); 3) Paired 
Associates (episodic memory); 4) Token Search 
(working memory and strategy); 5) Odd One Out 
(deductive reasoning); 6) Rotations (mental 
rotation); 7) Feature Match (feature-based 
attention and concentration); 8) Spatial Planning 
(planning and executive function); 9) Interlocking 
Polygons (visuospatial processing); 10) 
Grammatical Reasoning (verbal reasoning); 11) 
Double Trouble (a modified Stroop task); and 12) 
Digit Span (verbal working memory). Each CBS 
task has a primary outcome measure that best 
reflects overall performance for that task [29], 
and our results are based on this measure 
unless otherwise specified. The younger group 
(4-6 years) completed a subset of these tasks — 
Paired Associates, Feature Match, and Spatial 
Span — that did not require any reading 
comprehension skills. 

2.6 Data Analysis 
 
Data were analyzed using custom code written in 
Python (v3.6.2, https://www.python.org/) using 
SciPy (v0.19.1), an open source collection of 
python modules for performing scientific and 
mathematical computing. Specific packages 
used included: NumPy (v1.13.1) to provide high-
performance matrix and numeric calculation; 
Pandas (v0.20.3) for data organization, 
manipulation, and simple analyses; scikit-learn 
(v0.22.1) a machine learning toolbox that we 
used for data preprocessing and principal 
components analysis; and stats models (v0.8.0) 
for performing statistical tests (t-tests and 
ANOVAs). Figures were created using the Plotly 
for Python open source graphing library (v.4.7.1). 
 
Before analysis, tests scores were filtered to 
remove outliers that were more than four 
standard deviations from the test mean. Cases 
were omitted on a per-test basis, such that the 
sample size could differ between tests. Next, test 
scores were standardized to have mean of 0.0 
and standard deviation of 1.0 for each test. The 
parameters (i.e., the test means and standard 
deviations) used for this standardization step 
were derived from the larger dataset that 
included all subjects who had completed at least 
one assessment (N = 9,914 participants); only 
scores from participants’ first assessment were 
used for this normative sample. Finally, 
difference scores were calculated for each 
participant, for each test, to quantify their change 
in test performance from the first to second CBS 
time point.  
 
Differences scores were first analyzed using a 
mixed two-way ANOVA to examine the effects of 
group (BB, CTRL) and test (12 tests for age 7+ 
years, 3 tests for age 4-6 years) on changes in 
test performance. Levene’s test was used to 
confirm homogeneity of variance for the 
between-subjects factor (group) at each level of 
the within-subjects factor (test). Mauchly’s test 
was used to assess sphericity, and the 
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Greenhouse-Geiser correction was applied when 
this assumption was violated. 
 
To investigate whether any CBS tests showed a 
significant improvement from the first to second 
assessment, one-tailed one-sample t-tests were 
used to test, for both BB and control groups, 
whether group mean difference scores were 
greater than zero. Similarly, we were specifically 
interested in which tests exhibited greater 
improvements for the BB compared to control 
participants; given this a priori hypothesis, one-
tailed two-sample Welch’s t-tests were used to 
compare mean difference scores between 
groups (i.e., the single tail specifically testing the 
hypothesis that difference scores were greater 
for the BB vs control group). Welch’s t-test is 
robust to unequal sample sizes and/or variance 
and hence Type I errors [42,43], and therefore is 
a simple and appropriate statistical test for our 
data given the unequal sample sizes between 
groups. Statistical results were considered 
significant when p < 0.05 when corrected for 
multiple comparisons using the false discovery 
rate (FDR) method [44].  
 
Finally, we performed a multivariate analysis to 
identify latent “component” scores in the 12-test 
battery and investigated whether these showed 
significant differences between groups over time. 
In addition to the primary outcome measure for 
each test, there are numerous other features 
(e.g., average reaction time, number of errors) 
that carry information about test performance. 
Principal component analysis (PCA) was used to 
reduce the 66 total features across all 12 CBS 
tests to a lesser number of components. The 
data used to train the PCA model were different 
from BB and CTRL subject scores (i.e., the 
BB/CTRL subjects with before/after 
assessments) to avoid circularity and bias in 
subsequent analyses of component scores; from 
the normative dataset of BB participants who 
completed at least one assessment (N = 9,914), 
those who completed the 12-test battery, had no 
missing data features (N = 6,898), and were not 
part of the before/after dataset (N = 6,443) were 
used to train the PCA model. PCA loadings were 
“whitened” so that resulting components scores 
were standardized (M = 0, SD = 1.0). Only 17 of 
the 66 components were retained for analysis, 
because these components had eigenvalues 
greater than 1.0 and they together explained 
88% of the total variance in the dataset. In our 
analyses, components were ordered by 
decreasing variance explained (i.e., PC01 and 
PC17 indicate the first and 17th principal 

components and explain the most and least 
variance, respectively). Component scores were 
then calculated for every BB 7+ and CTRL 7+ 
participant, for their first and second 
assessments, which were then converted to 
difference scores and analyzed similarly to the 
individual test scores. However, two-tailed tests 
were used to investigate changes in component 
scores given that the signs of PCA components 
(i.e., ± directions) are arbitrary. 
 

3. RESULTS 
 
3.1 4- to 6-Year-Old Participants: Three-

Test Battery Results 
 
A two-way ANOVA on difference scores (i.e., the 
change in performance from first to second 
assessment) was first conducted to examine the 
relationship between Brain Balance programming 
and improvements in cognitive performance, with 
group membership (BB, CTRL) and cognitive test 
(three CBS tests) as factors. Levene’s test 
indicated homogeneity of variance for the group 
factor across all levels of the test factor (all p’s > 
0.05). We found a significant main effect of group 
(F(1,121) = 9.15, p < 0.005, 

2
 = 0.027), such that 

BB participants improved, in general, more than 
CTRL participants (Fig. 1). The main effect of 
cognitive test was not significant (F(1.81, 218.78) = 
2.34, p = 0.1), and neither was the interaction 
between group and test (F(1.81, 218.78) = 1.56, p = 
0.22). 
 

We next performed one-sample t-tests on 
difference scores for each group and cognitive 
test to identify which tests showed significant 
improvement (i.e., difference scores greater than 
zero); results are reported in Table 2. We found 
that 4- to 6-year-old BB participants improved on 
all three tests — Spatial Span (t(85) = 3.58, punc < 
0.001, pFDR < 0.005, d = 0.39), Feature Match 
(t(85) = 4.71, punc < 0.001, pFDR < 0.001, d = 0.51), 
and Paired Associates (t(85) = 2.17, punc < 0.05, 
pFDR < 0.05, d = 0.23) — whereas CTRL subjects 
improved only on Feature Match (t(36) = 2.33, punc 
< 0.05, pFDR < 0.05, d = 0.38). 
 

Two-sample t-tests were then used to directly 
compare, for each CBS test, whether the 
magnitude of improvement seen in BB subjects 
was greater than the CTRL subjects’ change in 
performance (Table 3; Fig. 1). This comparison 
was significant for both Spatial Span (t(58.04) = 
1.93, punc < 0.05, pFDR < 0.05, d = 0.39) and 
Paired Associates(t(70.89) = 2.46, punc < 0.01, pFDR 

= 0.05, d = 0.48). These results suggest that the 



significant main effect of group in the omnibus 
ANOVA (above) was driven by greater 
 

 
Fig. 1. The change in Cambridge Brain Sciences test performance from the first to second 
assessment for 4- to 6-year-old participants in the Brain Balance (red) and control (blue) 

groups. Test scores were first standardized (mean = 0; SD = 1.0 across the entire d
that performance could be compared between tests. Bar height is the average change, from 
first to second assessment, across participants in each group, and error bars indicate the 

standard error of the mean. Bars greater than zero indicate impro
assessment. The asterisk shows a significant difference between groups (

corr
Abbreviations: BB, Brain Balance treatment group; CTR

 
Table 2. Participants aged 4-6 years: Co

Test BB
t-stat df punc 

FM 4.71 85 < 0.001 
PA 2.17 85 0.016 
SS 3.58 85 < 0.001 

NOTE: Bold rows indicate tests that showed significant improvement
Abbreviations: BB, Brain Balance treatment group; CTRL, control; SS, spatial span; FM, feature match; PA, 
paired associates; t-stat, t-statistic for the one

degrees of freedom; punc uncorrected on

 
Table 3. Participants aged 4-6 years: Comparing the change in performance on each cognitive 

test (from first to second assessment) between the Brain Balance and control groups

Test t-stat df 
FM 0.69 69.66
PA 2.46 70.89
SS 1.93 58.04

NOTE: Bold rows indicate tests that showed significantly greater improvement for the BB group
Abbreviations: FM, feature match; PA, paired associates; SS, spatial span; 

sample test comparing group mean differences in difference scores; df, Satterthwaite
freedom; punc, uncorrected one-tailed p
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significant main effect of group in the omnibus 
ANOVA (above) was driven by greater 

improvement for BB participants on these two 
tests. 

 

The change in Cambridge Brain Sciences test performance from the first to second 
old participants in the Brain Balance (red) and control (blue) 

groups. Test scores were first standardized (mean = 0; SD = 1.0 across the entire d
that performance could be compared between tests. Bar height is the average change, from 
first to second assessment, across participants in each group, and error bars indicate the 

standard error of the mean. Bars greater than zero indicate improvement from first to second 
assessment. The asterisk shows a significant difference between groups (p < 0.05; FDR

corrected for multiple comparisons)  
Abbreviations: BB, Brain Balance treatment group; CTRL, control 

6 years: Comparing cognitive test performance from the first to 
second assessment 

 
BB CTRL 

pFDR d t-stat df punc pFDR

 < 0.001 0.51 2.33 36 0.013 0.039
0.016 0.23 -1.50 36 0.929 0.929

 < 0.001 0.39 -0.25 36 0.600 0.900
: Bold rows indicate tests that showed significant improvement 

Abbreviations: BB, Brain Balance treatment group; CTRL, control; SS, spatial span; FM, feature match; PA, 
statistic for the one-sample t-test comparing difference scores against zero; df, 

uncorrected one-tailed p-value; pFDR p-value corrected for multiple comparisons; 
Cohen’s d 

6 years: Comparing the change in performance on each cognitive 
test (from first to second assessment) between the Brain Balance and control groups

 
punc pFDR 

69.66 0.246 0.246 
70.89 0.008 0.024 
58.04 0.029 0.044 

: Bold rows indicate tests that showed significantly greater improvement for the BB group
Abbreviations: FM, feature match; PA, paired associates; SS, spatial span; t-stat, Welch’s t-statistic for the two

sample test comparing group mean differences in difference scores; df, Satterthwaite-corrected degrees of 
p-value; pFDR, p-value corrected for multiple comparisons; d

Welch’s test 
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improvement for BB participants on these two 

The change in Cambridge Brain Sciences test performance from the first to second 
old participants in the Brain Balance (red) and control (blue) 

groups. Test scores were first standardized (mean = 0; SD = 1.0 across the entire dataset) so 
that performance could be compared between tests. Bar height is the average change, from 
first to second assessment, across participants in each group, and error bars indicate the 

vement from first to second 
< 0.05; FDR-

mparing cognitive test performance from the first to 

FDR d 
0.039 0.38 
0.929 -0.25 
0.900 -0.04 

Abbreviations: BB, Brain Balance treatment group; CTRL, control; SS, spatial span; FM, feature match; PA, 
test comparing difference scores against zero; df, 

value corrected for multiple comparisons; d, 

6 years: Comparing the change in performance on each cognitive 
test (from first to second assessment) between the Brain Balance and control groups 

d 
0.14 
0.48 
0.39 

: Bold rows indicate tests that showed significantly greater improvement for the BB group 
statistic for the two-

corrected degrees of 
d, Cohen’s d for 



3.2 7+ Year-Old Participants: 12
Battery Results 

 

Again, we performed a two-way ANOVA on 
difference scores with group membership (BB, 
CTRL) and cognitive test (12 tests) as factors. 
Levene’s test for homogeneity of variance 
indicated no violations of this assumption (all 
corrected p’s > 0.05). We observed
main effect of group (F(1, 417) = 15.87, 


2
 = 0.004), such that BB participants (again) 

improved more than CTRL participants (
There was also a significant main effect of test 
(F(10.42, 4344.35) = 4.74, p < 0.001, 
indicating that the amount of improvement 
differed between the cognitive tasks, but we did 
not explore this effect further because we were 
primarily interested in differences between 
groups. There was no significant interaction 
between group and CBS test (F
1.28, p = 0.23, 

2
 = 0.003). 

 

One-sample t-tests of the difference scores for 
each group and cognitive test showed that BB 
participants improved on all 12 tests (see 
for complete statistics). In contrast, the CTRL 
group improved only on Spatial Planning (
4.62, punc < 0.001, pFDR < 0.001, d = 0.54). 

 
Fig. 2. The change in Cambridge Brain Sciences test performance from first to second 

assessment for participants aged 7 years and older (7+) in the Brain Balance (red) and control 
(blue) groups. Bar height indicates the average change from first to second assessm
across participants in each group, and error bars show the standard error of the mean. 

Asterisks show significant differences between groups (

Abbreviations: BB, Brain Balance treatment group; CTR
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Old Participants: 12-Test 

way ANOVA on 
difference scores with group membership (BB, 
CTRL) and cognitive test (12 tests) as factors. 
Levene’s test for homogeneity of variance 
indicated no violations of this assumption (all 

’s > 0.05). We observed a significant 
= 15.87, p < 0.001, 

= 0.004), such that BB participants (again) 
improved more than CTRL participants (Fig. 2). 
There was also a significant main effect of test 

< 0.001, 2 = 0.01), 
indicating that the amount of improvement 
differed between the cognitive tasks, but we did 
not explore this effect further because we were 
primarily interested in differences between 
groups. There was no significant interaction 

F(10.42, 4344.35)= 

tests of the difference scores for 
each group and cognitive test showed that BB 
participants improved on all 12 tests (see Table 4 
for complete statistics). In contrast, the CTRL 
group improved only on Spatial Planning (t(72) = 

= 0.54).  

Again, between-group comparisons were used to 
test whether the BB subjects improved more than 
the CTRL group (Table 5). Uncorrected statistics 
revealed significant group differences for six 
tests – Spatial Span, Digit Span, Token Search, 
Grammatical Reasoning, Odd One Out, and 
Rotations – but only three survived a correction 
for 12 comparisons: Digit Span (
punc < 0.005, pFDR = 0.05, d = 0.35), Grammatical 
Reasoning (t(100.24) = 2.58, punc < 0.01, 
0.05, d = 0.34), and Odd One Out (
punc < 0.01, pFDR < 0.05, d = 0.30). Taken 
together, these results indicate that the overall 
main effect of group in the ANOVA (i.e., greater 
overall cognitive improvement for BB 
participants) was due primarily to these three 
tests. 

 
3.3 Multivariate Analysis 
 
PCA of the larger normative dataset (i.e., sets of 
scores comprising all complete first 
assessments; N = 6,443) produced a model from 
which 17 components were retained. The first 
(largest) component explained 27% of the 
variance in the dataset, and cumulatively the 17 
components explained 88% of the total variance. 

 

The change in Cambridge Brain Sciences test performance from first to second 
assessment for participants aged 7 years and older (7+) in the Brain Balance (red) and control 

(blue) groups. Bar height indicates the average change from first to second assessm
across participants in each group, and error bars show the standard error of the mean. 

Asterisks show significant differences between groups (p < 0.05, FDR-corrected for multiple 
comparisons) 

Abbreviations: BB, Brain Balance treatment group; CTRL, control 
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Table 4. Participants aged 7 years and older: Comparing cognitive test performance from the 
first to second assessment 

 
Test BB 7+ CTRL 7+ 

t-stat df punc pFDR d t-stat df punc pFDR d 
DS 5.35 355 < 0.001 < 0.001 0.28 -0.75 74 0.771 0.771 -0.09 
DT 6.36 354 < 0.001 < 0.001 0.34 1.95 74 0.027 0.164 0.23 
FM 3.77 355 < 0.001 < 0.001 0.20 -0.08 74 0.532 0.755 -0.01 
GR 6.02 355 < 0.001 < 0.001 0.32 -0.32 74 0.625 0.755 -0.04 
ML 5.39 354 < 0.001 < 0.001 0.29 0.93 72 0.179 0.716 0.11 
OOO 4.09 351 < 0.001 < 0.001 0.22 -0.68 73 0.749 0.771 -0.08 
PA 3.12 355 0.001 0.001 0.17 -0.12 74 0.547 0.755 -0.01 
PO 1.96 354 0.026 0.026 0.10 0.29 74 0.385 0.755 0.03 
RO 4.14 355 < 0.001 < 0.001 0.22 -0.06 74 0.523 0.755 -0.01 
SP 7.93 354 < 0.001 < 0.001 0.42 4.62 72 < 0.001 < 0.001 0.54 
SS 4.20 355 < 0.001 < 0.001 0.22 -0.33 74 0.629 0.755 -0.04 
TS 3.63 355 < 0.001 < 0.001 0.19 -0.22 74 0.588 0.755 -0.03 

NOTE: Bold rows indicate tests that showed significant improvements, corrected for 12 comparisons, in each 
group  

Abbreviations: BB, Brain Balance treatment group; CTRL, control; SS, spatial span; GR, grammatical reasoning; 
DT, digit span; OOO, odd one out; ML, monkey ladder; RO, rotations; FM, feature match; DS, digit span; SP, 

spatial planning; PA, paired associates; PO, polygons; TS, token search; t-stat = t-statistic for the one-sample t-
test comparing difference scores against zero; df = degrees of freedom; punc = uncorrected one-tailed p-value; 

pFDR = p-value corrected for multiple comparisons; d = Cohen’s d 

 
Table 5. Participants aged 7 years and older: Comparing the change in performance on each 

cognitive test (from first to second assessment) between the Brain Balance and control 
groups 

 
Test t-stat df punc pFDR d 
DS 2.67 98.64 0.004 0.034 0.35 
DT 0.87 107.37 0.192 0.230 0.11 
FM 1.55 102.71 0.062 0.095 0.20 
GR 2.58 100.24 0.006 0.034 0.34 
ML 1.35 102.66 0.090 0.120 0.17 
OOO 2.40 110.24 0.009 0.036 0.30 
PA 1.54 116.95 0.063 0.095 0.19 
PO 0.42 96.27 0.339 0.370 0.06 
RO 1.76 106.44 0.041 0.082 0.22 
SP -1.23 98.33 0.889 0.889 -0.16 
SS 1.85 98.33 0.034 0.081 0.25 
TS 2.02 129.32 0.023 0.069 0.24 

NOTE: Bold rows indicate tests that had significantly greater improvement for BB participants, corrected for 
multiple comparisons (pFDR < 0.05) 

Abbreviations: SS, spatial span; GR, grammatical reasoning; DT, digit span; OOO, odd one out; ML, monkey 
ladder; RO, rotations; FM, feature match; DS, digit span; SP, spatial planning; PA, paired associates; PO, 

polygons; TS, token search; t-stat = Welch’s t-statistic for the two-sample test comparing group mean differences 
in difference scores; df = Satterthwaite-corrected degrees of freedom; punc = uncorrected one-tailed p-value; pFDR 

= p-value corrected for multiple comparisons; d = Cohen’s d for Welch’s test 

 
Analyses of component difference scores 
(representing the change in performance, for 
each component, from the first to second 
assessment) showed that the BB 7+ group had 
significant changes in performance on six 
measures (Fig. 3; also see Table S1 and Fig. S1 
in Supplementary Material): PC01 (t(313) = 16.34, 
punc < 0.001, pFDR < 0.001, d = 0.92); PC03 (t(313)= 

3.42, punc = 0.001, pFDR < 0.005, d = 0.19); PC10 
(t(313) = 3.07, punc < 0.005, pFDR < 0.01, d = 0.17); 
PC11 (t(313) = 4.25, punc < .001, pFDR < 0.001, d = 
0.24); PC13 (t(313) = 3.07, punc < 0.005, pFDR < 
0.05, d = 0.16); and PC15 (t(313) = -3.01, punc < 
0.005, pFDR < 0.05, d = -0.17). The CTRL 7+ 
group, on the other hand, showed significant 
change on only two components (Fig. 3; also see 



Table S1 in Supplementary Material): PC11 (
= 3.48, punc < 0.001, pFDR < 0.05, d
PC15 (t(66) = -3.14, punc < 0.005, pFDR 

0.25). Importantly, we found that the change in 
performance differed significantly between 
groups for only the first principal component: 
PC01 (t(81.50) = 4.19, punc < 0.001, 
(Fig. 3; also see Table S2 in Supplementary 
Material). As a consequence of the PCA scores 
being standardized, this means they improved by 
0.42 standard deviations (Cohen’s 
which corresponds to a small-to-medium effect 
size, according to Cohen’s criteria [45]
 

4. DISCUSSION 
 

The transition from childhood through 
adolescence into adulthood represents a window 
of opportunities for the acquisition of complex 
higher-order cognitive abilities and for the 
corresponding refinements in brain structure and 
function supporting these abilities [46,47]. 
Evidence suggests that cognitive abilities during 
development can be improved through various 
types of training and practice 
[15,16,17,18,20,21]. In the present study, 
children and adolescents with developmental and 
cognitive difficulties, including attentiona
showed improvements in aspects of cognitive 
task performance following participation in the 
Brain Balance program, a comprehensive 
multimodal training program. The improvements 
in cognitive performance were observed in all 

 
Fig. 3. The change in principal component analysis scores from first to second assessment for 
participants aged 7 years and older (7+) in the Brain Balance (red) and control (blue) groups. 

Only components that showed a significant difference from zero for the BB 
shown. The asterisk shows significant differences between groups (

Abbreviations: BB, Brain Balance treatment group; CTRL, co
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Table S1 in Supplementary Material): PC11 (t(66) 
d = 0.42) and 

FDR < 0.05, d = 
0.25). Importantly, we found that the change in 
performance differed significantly between 
groups for only the first principal component: 

< 0.001, pFDR = 0.001) 
; also see Table S2 in Supplementary 

s a consequence of the PCA scores 
being standardized, this means they improved by 
0.42 standard deviations (Cohen’s d = 0.42) 

medium effect 
[45]. 

childhood through 
adolescence into adulthood represents a window 
of opportunities for the acquisition of complex 

order cognitive abilities and for the 
corresponding refinements in brain structure and 
function supporting these abilities [46,47]. 

ence suggests that cognitive abilities during 
development can be improved through various 
types of training and practice 

]. In the present study, 
children and adolescents with developmental and 
cognitive difficulties, including attentional issues, 
showed improvements in aspects of cognitive 
task performance following participation in the 
Brain Balance program, a comprehensive 
multimodal training program. The improvements 
in cognitive performance were observed in all 

age groups examined, ranging from 4 to 17 
years.  
 

In children aged 4-6 years, we measured 
performance on three select tasks of cognition 
that a child without letter or number recognition 
would be capable of completing. These children 
showed significant improvements on all three
tasks — Spatial Span, Feature Match, and 
Paired Associates — after program participation, 
compared to their own baseline performance 
prior to program initiation. In the control group, 
some participation in the program (on average 27 
days) was sufficient to produce a significant 
improvement from pre- to post-program, but on 
only one task — Feature Match 
measures concentration and attention. 

 
The results for the 4- to 6-year-old group also 
showed that the Brain Balance group impr
more overall in cognitive performance than the 
control group. This overall improvement 
stemmed from a significant difference between 
the groups in performance on two tests in 
particular, where the Brain Balance group 
showed significantly greater perfo
Spatial Span and Paired Associates compared to 
controls. Spatial Span is thought to measure 
planning and executive function, and Paired 
Associates is thought to measure episodic 
memory, the ability to remember and recall 
events paired with the context (e.g., particular 

 

The change in principal component analysis scores from first to second assessment for 
participants aged 7 years and older (7+) in the Brain Balance (red) and control (blue) groups. 

Only components that showed a significant difference from zero for the BB 7+ group are 
shown. The asterisk shows significant differences between groups (p < 0.05, FDR

for multiple comparisons) 
Abbreviations: BB, Brain Balance treatment group; CTRL, control; PC, principal component
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times and places) in which they occurred [48]. 
Episodic memory has been argued to be 
involved both in the capacity to retrieve personal 
past experiences and to foresee future 
scenarios, which develops substantially between 
3 and 5 years old [49].  
 

In children aged 7+ years, we measured 
performance on a more extensive battery that 
included 12 cognitive tests assessing various 
areas of memory, reasoning, verbal ability, and 
concentration. Like the participants in the 4-6 age 
group, those in the 7+ age group who completed 
the Brain Balance program demonstrated 
significant improvement on all tests from pre- to 
post-program. In contrast, the control group 
improved on only one test (spatial planning). The 
results in children aged 7+ years were similar to 
those in the 4-6 age group in that they also 
showed significantly greater overall cognitive 
improvement than the control group. This group 
difference between the Brain Balance group and 
the control group was attributable primarily to 
significantly greater improvement on three tests 
in particular: Grammatical Reasoning (which 
measures verbal reasoning), Digit Span (which 
measures verbal short-term memory), and Token 
Search (which measures working memory).  
 

A principal components analysis performed on 
the 12-test data from the 7+ age group largely 
corroborated aspects of the abovementioned 
results, in that children in the Brain Balance 
group significantly improved on a greater number 
of components from pre- to post-program than 
did the control group. Further analysis showed 
that pre- and post-program improvements in 
cognitive performance differed significantly 
between the Brain Balance group and the control 
group for one principal component in particular, 
PC01. The pattern of these results indicated that 
the group difference was driven by the fact that 
Brain Balance participants exhibited a large and 
significant improvement in this score whereas 
control participants did not. Although 
components can be difficult to interpret when 
many variables load on them, PC01 is easily 
explainable: the loadings were positive for all 
score features that increased with better 
performance (e.g., number of items correct) and 
were negative for score features that increased 
with worse performance (e.g., number of errors, 
or reaction times). Therefore, PC01 can be 
interpreted as a measure of overall performance 
across the battery of 12 cognitive tests.  
 
Collectively, the results show that children in both 
the younger and older age groups who 

completed the Brain Balance program displayed 
significant improvements in cognitive task 
performance, particularly in the areas of memory 
(episodic, short-term, and working memory) and 
reasoning. Interestingly, significant 
improvements in performance were also 
observed on some cognitive tasks even in the 
control groups that participated in the program 
for less time — for example, on tasks measuring 
attention and spatial planning. These results may 
reflect the capacity of certain aspects of cognitive 
performance to change in response to a shorter 
time period of training than other areas that may 
require a longer duration of training before 
significant improvements can be seen. However, 
while both the Brain Balance and control groups 
showed improvement, the present findings 
suggest that a longer duration of program 
participation (3 months) may be more efficacious 
in producing cognitive gains than a shorter 
duration of participation (on average for 27 days).  
Alternatively, improvements in the control groups 
might reflect a practice effect (i.e., better 
performance at the tests the second time 
around). The Brain Balance groups, however, 
exhibited improvements that were greater than 
those in the control groups, suggesting that their 
improvements are not due to just practice, but 
rather to specific training aspects related to the 
Brain Balance program.  
 
The participants in the present study all 
presented with developmental and cognitive 
difficulties (including inattention) prior to program 
enrollment. The areas of cognitive performance 
that improved after Brain Balance program 
participation are some of the same cognitive 
areas reported to be impaired in children with 
ADHD compared to typically developing children 
[50,51,52]. Conventional first-line treatments for 
ADHD include pharmacological treatment with 
central nervous system stimulants; however, the 
number of non responders, the risk of adverse 
effects, medication adherence issues, and 
potential consequences on the developing brain 
call for more alternatives or adjuncts to 
pharmacological treatment in order to optimize 
functioning [53,54]. Although 
nonpharmacological alternatives may not be as 
effective for targeting the core ADHD symptoms 
especially in more severe cases, they may 
effectively address ADHD-related impairments, 
such as working memory deficits [55]. Consistent 
participation in training programs, such as the 
Brain Balance program, may serve as a potential 
nonpharmacologic alternative or adjunct to 
supporting cognitive development and 
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associated academic performance in children 
with cognitive difficulties and attentional issues. 

 
In this study, significant cognitive improvements 
resulted from participation in a multimodal 
combination of many intervention-based 
activities. These findings will form the basis for a 
number of future controlled trials that could better 
distinguish the individual aspects of Brain 
Balance training that are most effective for 
improving cognitive performance and other 
functional outcomes. For example, it is plausible 
that the cognitive improvements observed in this 
study may have occurred, in part, through an 
indirect effect on improvements in sensory 
regulation and/or in motor skills. There is a 
significant positive correlation between the 
number of ADHD traits and the frequency of 
reported sensory processing problems [56], and 
children with ADHD exhibit more sensory 
processing problems than children without ADHD 
[57,58,59], suggesting that sensory difficulties 
could be part of the ADHD phenotype [60]. 
Interestingly, adding a sensory-stimulation 
intervention to psychostimulant treatment in 
children with ADHD produces significant gains in 
reading recognition and comprehension and in 
math calculations and problem solving [61].  In 
addition, both fine and gross motor skills are 
associated with better performance in various 
cognitive domains, including sustained attention, 
spatial working memory, processing speed, and 
episodic and semantic memory, which, in turn, 
are all associated with better performance in 
math and reading comprehension [62,63]. 
Because a substantial portion of the Brain 
Balance program targets sensorimotor 
functioning, improvements in sensorimotor areas 
might in turn also improve cognitive skills in 
children with developmental and attentional 
difficulties. 

 
Ideally, any cognitive gains achieved after Brain 
Balance program participation would continue to 
be maintained beyond the 3 months of 
participation. If these skills are indeed 
maintained, the present findings could potentially 
have important implications for longer term 
performance in academic settings. Although the 
present study did not follow up with participants 
at additional later time points after program 
completion, there is evidence suggesting that 
cognitive gains from training programs can have 
lasting effects in children [64,65].  Future studies 
will need to follow up on whether the observed 
effects on cognitive task performance endure 
beyond completion of the program. 

The present study’s inclusion of a control group 
that participated for less time than the Brain 
Balance treatment group was helpful in 
potentially revealing the specific cognitive areas 
that improve with shorter versus longer duration 
of program participation. However, the lack of a 
control group that is entirely nonparticipating 
necessitates caution in interpretation of the 
findings. A comparison of program participants 
with nonparticipant controls will be important to 
making more complete conclusions on the 
effects of the Brain Balance program on cognitive 
functioning in future studies.  
 

5. CONCLUSION 
 
In this retrospective review of cognitive test 
results from the Cambridge Brain Sciences 
database, we found that participants of the Brain 
Balance program showed significant overall 
performance on specific tests of memory, 
reasoning, verbal ability, and concentration. The 
present findings point to the potential of 
nonpharmacologic training programs, such as 
the Brain Balance program, in significantly 
improving aspects of cognitive performance in 
children and adolescents with developmental and 
attentional issues, especially programs that 
comprehensively target and integrate multiple 
developmental areas. 
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