Martin H. Teicher, M.D., Ph.D

Director, Developmental Biopsychiatry Research Program Chief, Laboratory of Developmental Psychopharmacology

Harvard Medical School

Department of Psychiatry

Associate Professor
Phone: 617-855-2970

Fax: 617-855-3712

Email:

martin_teicher@hms.harvard.edu

McLean Hospital

115 Mill Street Belmont, MA 02478-9106

White Paper: Profound Effects of Brain Balance Exercises and Interactive Metronome and on a Subset of Children with Attention Deficit Hyperactivity Disorder

Introduction

Attention-deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders of childhood, and it often persists into adulthood². ADHD is characterized by a triad of symptoms: inattention, hyperactivity and impulsivity². Although common, it is a serious disorder associated with a 10-fold increased incidence of antisocial personality disorder^{12,35}, up to 5-fold increased risk of drug abuse^{10,12}, 25-fold excess risk for institutionalization for delinquency²², and up to 9-fold increased risk of incarceration¹⁴. ADHD is often highly responsive to medications, but the gains are transient and wear off after each dose³¹. To compound matters, compliance is usually poor¹⁹. There is a pressing need to identify treatments that provide enduring benefits. Children with ADHD often have severe deficits in timing and the ability to utilize temporal information^{21,25,26,33,37}. Hence, we sought to evaluate whether training with 'Brain Balance' exercises coupled with temporal training on the Interactive Metronome that foster right hemisphere development and right-left hemispheric integration fits with what we and others have observed neurobiologically^{1,3,5-7,13,17,20,34,36,38}.

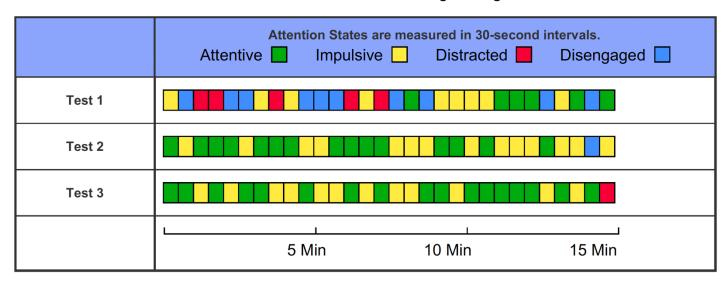
Specific Aims

- I. To test in an open study whether Brain Balance Exercises^{15,16} and Interactive Metronome Training^{4,8,23} are associated with measurable improvements in attention, impulse control and activity on the Quotient ADHD System and in spatial working memory and spatial span on CANTAB.
- II. To identify, using resting-state functional connectivity, brain changes associated with beneficial effects of Brain Balance exercises and Interactive Metronome Training.

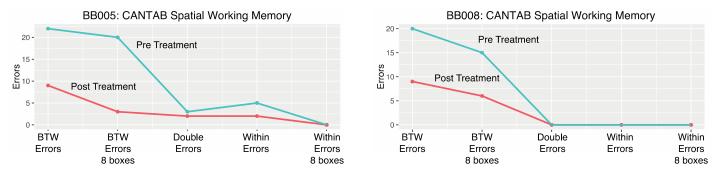
Methodology

Participants were children of either sex between 8-14 years of age recruited from the community and confirmed to have ADHD through structured diagnostic interview (K-SADS-PL¹¹). Treatment consisted of 15-weeks of Brain Balance^{15,16} and Interactive Metronome^{4,8,23} training (up to 75 sessions). Brain Balance and Interactive Metronome Training consisted of a series of online web-based training exercises. The exercises were standardized and the same for every participant. Participants had neither the benefit of personalized tailoring of the exercises to fit their specific needs nor the benefit of supervised training by an experienced administrator.

Clinical response was assessed using the Quotient ADHD System. This technology was developed by Dr. Teicher, has been cleared by the FDA, and has been licensed through McLean Hospital to BioBehavioral Diagnostic Company/Pearson for commercialization. Briefly, children sit in front of a computer and take a monotonous but demanding cognitive control task called the Star CPT²⁹ while an infrared motion analysis system tracks head movements throughout the test period^{18,28}.


This test is highly responsive to the effects of medication^{30,32}, correlates with blood levels of methylphenidate³¹ but is not responsive to placebo²⁷. Indeed, we reported in N=30 children receiving placebo that only 7% showed a greater than 25% improvement and none had a 40% or greater improvement in Quotient scaled scores. In contrast, 47% and 27% had this degree of improvement on clinical ratings, which are highly subjective. Similarly, spatial working memory, which is the executive function most noticeably impaired in ADHD²⁹ was objectively assessed using the Cambridge Neuropsychological Test Automated Battery (CANTABTM).

Neuropsychological Results


To date, 5 of 14 children (36%) with ADHD who completed Brain Balance and Interactive Metronome training had a 40% or greater improvement in Quotient measures of Hyperactivity or Inattention or CANTAB measure of Spatial Working Memory. This is a degree of improvement that we have not previously observed in children with ADHD unless they were receiving medications, and then only if they were receiving the correct medication at optimal dose.

Examples

Patient's Attention States During Testing

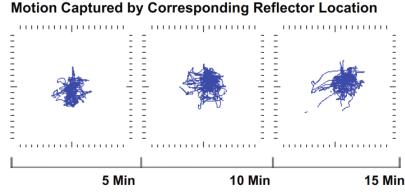


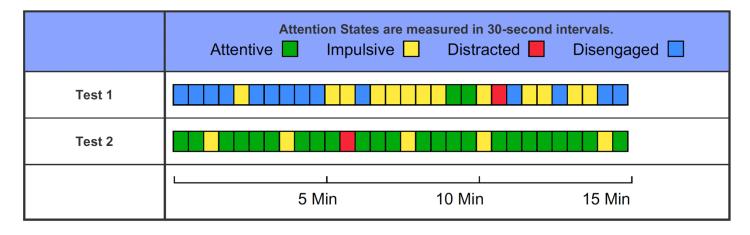
Figure 1. Attention performance on Quotient in participant BB001. A determination was made every 30 seconds as to whether the participant was fully attentive, was partially attentive but making some impulsive errors, was partially attentive but making a few distracted errors or was disengaged and not paying attention. Test 1 took place prior to Brain Balance and Interactive Metronome training. Test 2 shortly after Brain Balance and Interactive Metronome training and Test 3 took place 7 months after Test 2, indicating persistence of benefits on attention.

Figure 2. Spatial Working Memory test performance on CANTAB in participants BB005 and BB008 prior to and following Brain Balance and Interactive Metronome treatments. Note marked reduction in between errors. The Spatial Working Memory test requires retention and manipulation of visuospatial information. This self-ordered test has notable executive function demands and provides a measure of strategy as well as working memory errors.

Motion Results

Measure	Age Percentile t ≤ 16 Age Percentile
Immobility Duration:	6 ^t
Movements:	5 ^t
Displacement:	6 ^t
Area:	15 ^t
Spatial Complexity:	15 ^t
Temporal Scaling:	3 ^t

Motion Captured by Corresponding Reflector Location


	5 Min	10 Min	15 Min
-			
_			
_		_ :	
_			Ī
-			
-			
_			_
_ 		TOP 1	
_ 2			- <u>ra</u> () -
-			- Λ -
-			
-			
-			
_			_
_			
Ξ			

Motion Results

Measure	Age Percentile t ≤ 16 Age Percentile
Immobility Duration:	42
Movements:	37
Displacement:	42
Area:	65
Spatial Complexity:	63
Temporal Scaling:	29

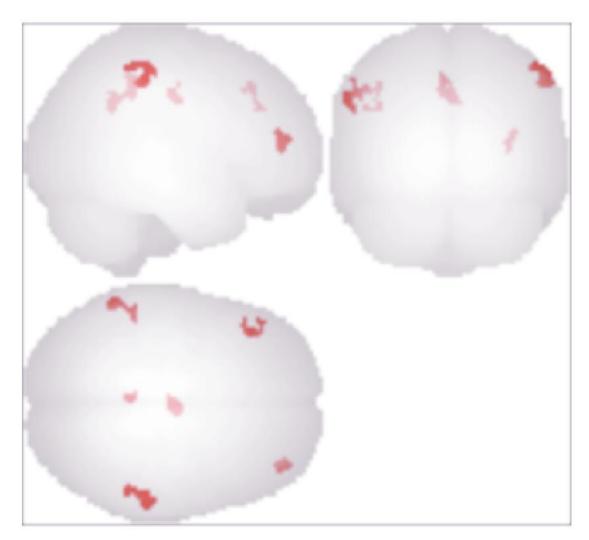
Figure 3. Measures of hyperactivity on Quotient test in BB010 (A) prior to and (B) following Brain Balance and Interactive Metronome treatment. Hyperactivity is based on infrared motion tracking of head marker during each 5 -minute test period. Note that prior to treatment the subject was in the top 3-15% of most hyperactive individuals within their age range. Following treatment their activity measures were in the 29-65% percentile indicating that they were no longer clinically hyperactive and well within normal range.

Patient's Attention States During Testing

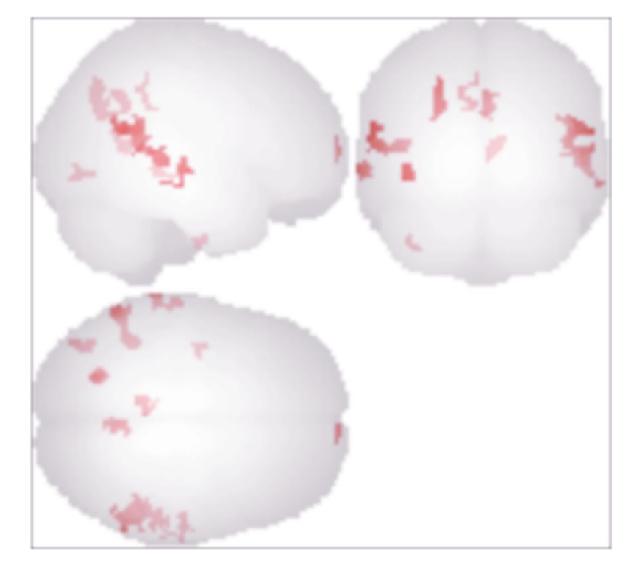
Measure	Age Percentile (<u>t</u> ≤ 16 Age Percentile)		
Accuracy:	6 ^t	61	
Omission Errors:	20	76	
Commission Errors:	2 ^t	57	
Latency:	33	84	
Variability:	3 ^t	38	
C.O.V.:	2 ^t	59	

Figure 4. Measures of inattention on Quotient test in BB026 prior to and following treatment with Brain Balance and Interactive Metronome exercises. Note that prior to treatment that the participant was in the lowest 2 - 6 percentile for accuracy, errors of commission (impulsive errors) and performance variability (including C.O.V. – coefficient of variation), which are indicative of fluctuating attention, effort and timing. BB026 tested in the normal range on these measures (38 – 61st percentile) following Brain Balance and Interactive Metronome treatment.

Preliminary Neuroimaging Results


Data were analyzed in all youths (N=14) to assess the impact of number of Brain Balance and Interactive Metronome training session completed on resting state functional connectivity. Initially, we focused on effects on prefrontal cortex and striatum (caudate and putamen). These are brain regions strongly implicated in the neurobiology of ADHD. Briefly, we found that Brain Balance and Interactive Metronome training was associated with increased connectivity between prefrontal cortex and the frontal pole, temporal pole, cerebellum, precentral gyrus and supramarginal gyrus. Brain balance training had relatively little influence on striatal connectivity, primarily increasing connectivity between the caudate nucleus and the precuneus and middle temporal gyrus.

What we observed instead was that Brain Balance and Interactive Metronome exercises appeared to have widespread effects on connectivity of the amygdala and hippocampus, which are key limbic regions involved in implicit and explicit memory as well as stress response. Brain Balance and Interactive Metronome training was associated with increased connectivity of the amygdala with supramarginal gyrus, cingulate gyrus, anterior cingulate, angular gyrus, frontal pole and precuneus. Pathways between the amygdala and cingulate typically strengthen during adolescence and provide more control over emotions and impulses. Similarly, Brain Balance and Interactive Metronome training was associated with increased connectivity between the hippocampus and the angular gyrus, precuneus, middle temporal gyrus, lateral occipital cortex, supramarginal gyrus, cingulate gyrus and frontal pole.


The angular gyrus, supramarginal gyrus and middle temporal gyrus are all involved in language processing. The angular gyrus, in particular, is involved in language processing, memory retrieval, handwriting, ability to calculate mathematically and left/right discrimination. These language structures in the left hemisphere, which surround Wernicke's area are, according to Diedrichsen⁹, most directly involved with intrinsic timing (rather than timing based on coordinated motor movements – which is cerebellar). These appear to be potent changes. Our findings of symptomatic improvement and enhanced connectivity of the supramarginal gyri with the amygdala, hippocampus, and prefrontal cortex is consistent with a recent report showing that reduced connectivity of the left and right supramarginal gyri was associated with increased symptom severity in ADHD²⁴. Given the role these regions appear to play in timing makes these observations particularly compelling.

The cerebellum is also critically involved in timing and time perception, so we assessed the effects of Brain Balance and Interactive Metronome training on resting state functional connectivity of the cerebellum. Briefly, number of training sessions was associated with increased resting state functional connectivity between: cerebellum I and middle frontal gyrus; cerebellum II and inferior temporal gyrus/fusiform gyrus; cerebellum IV-V and parahippocampal gyrus and inferior temporal gyrus/fusiform gyrus; cerebellum VII and lateral occipital cortex; cerebellum VIII and superior frontal gyrus and cerebellum IX and lingual gyrus and postcentral gyrus. Brain Balance and Interactive metronome training was also associated with decreased resting state functional connectivity between cerebellum III and anterior cingulate gyrus and cerebellum VI and lateral occipital gyrus.

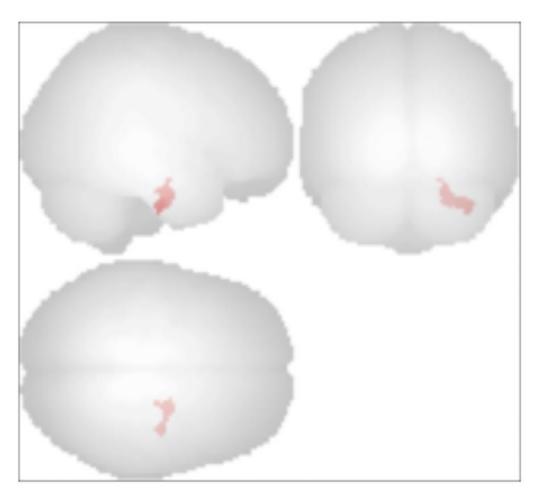

Further work is in progress to better define the constellation of changes associated with Brain Balance and Interactive Metronome training and their relationship to clinical outcome.

Figure 5. Regions in which number of Brain Balance and Interactive Metronome sessions completed were associated with change in functional connectivity with the amygdala (bilateral seeds). These regions included: supramarginal gyrus, cingulate gyrus, anterior cingulate, angular gyrus, frontal pole and precuneus.

Figure 6. Regions in which number of Brain Balance and Interactive Metronome sessions completed were associated with change in functional connectivity with the hippocampus (bilateral seeds). These regions included: angular gyrus, precuneus, middle temporal gyrus, supramarginal gyrus, lateral occipital cortex, cingulate gyrus and frontal pole.

Figure 7. Regions in which number of Brain Balance and Interactive Metronome sessions completed were associated with change in functional connectivity with the lobule V of the cerebellum, which is most directly involved in state-dependent motor timing⁹. Functional connectivity was enhanced in the parahippocampal gyrus / temporal fusiform area.

June 4, 2019

Literature Cited

- 1. Anderson, C.M., Polcari, A., Lowen, S.B., Renshaw, P.F., and Teicher, M.H. (2002) Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry 159, 1322-1328.
- 2. APA, A.P.A. (1994) Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition (DSM-IV).
- 3. Arnsten, A.F. (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23 Suppl 1, 33-41
- 4. Bartscherer, M.L., and Dole, R.L. (2005) Interactive metronome training for a 9-year-old boy with attention and motor coordination difficulties. Physiother Theory Pract 21, 257-269
- 5. Berquin, P.C., Giedd, J.N., Jacobsen, L.K., Hamburger, S.D., Krain, A.L., Rapoport, J.L., and Castellanos, F.X. (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50, 1087-1093
- 6. Casey, B.J., Castellanos, F.X., Giedd, J.N., Marsh, W.L., Hamburger, S.D., Schubert, A.B., Vauss, Y.C., Vaituzis, A.C., Dickstein, D.P., Sarfatti, S.E., and Rapoport, J.L. (1997) Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 36, 374-383
- 7. Clark, L., Blackwell, A.D., Aron, A.R., Turner, D.C., Dowson, J., Robbins, T.W., and Sahakian, B.J. (2007) Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology? Biol Psychiatry 61, 1395-1401
- 8. Cosper, S.M., Lee, G.P., Peters, S.B., and Bishop, E. (2009) Interactive Metronome training in children with attention deficit and developmental coordination disorders. Int J Rehabil Res 32, 331-336
- 9. Diedrichsen, J., Criscimagna-Hemminger, S.E., and Shadmehr, R. (2007) Dissociating timing and coordination as functions of the cerebellum. J Neurosci 27, 6291-6301
- 10. Gittelman, R., Mannuzza, S., Shenker, R., and Bonagura, N. (1985) Hyperactive boys almost grown up. I. Psychiatric status. Arch Gen Psychiatry 42, 937-947
- 11. Kaufman, J., Birmaher, B., Axelson, D., Perepletchikova, F., Brent, D., and Ryan, N. (2016) Schedule for Affective Disorders and Schizophrenia for School Aged Children (6-18 Years). Kiddie-SADS Lifetime Version (K-SADS-PL DSM-5 November 2016). . (Advanced Center for Intervention and Services Research (ACISR) for Early Onset Mood and Anxiety Disorder Western Psychiatric Institute and Clinic and Child and Adolescent Research and Education (CARE) program, ed)
- 12. Klein, R.G., and Mannuzza, S. (1991) Long-term outcome of hyperactive children: a review. J Am Acad Child Adolesc Psychiatry 30, 383-387
- 13. Mackie, S., Shaw, P., Lenroot, R., Pierson, R., Greenstein, D.K., Nugent, T.F., 3rd, Sharp, W.S., Giedd, J.N., and Rapoport, J.L. (2007) Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry 164, 647-655
- 14. Mannuzza, S., Klein, R.G., Konig, P.H., and Giampino, T.L. (1989) Hyperactive boys almost grown up. IV. Criminality and its relationship to psychiatric status. Arch Gen Psychiatry 46, 1073-1079
- 15. Melillo, R. (2009) Disconnected Kids: The Groundbreaking Brain Balance Program for Children with Autism, ADHD, Dyslexia, and Other Neurological Disorders. Penguin Group
- 16. Melillo, R. (2011) Reconnected Kids: Help Your Child Achieve Physical, Mental, and Emotional Balance. Penguin Group
- 17. Mostofsky, S.H., Reiss, A.L., Lockhart, P., and Denckla, M.B. (1998) Evaluation of cerebellar size in attention-deficit hyperactivity disorder. Journal of Child Neurology 13, 434-439
- 18. Ohashi, K., Vitaliano, G., Polcari, A., and Teicher, M.H. (2010) Unraveling the nature of hyperactivity in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 67, 388-396
- 19. Perwien, A., Hall, J., Swensen, A., and Swindle, R. (2004) Stimulant treatment patterns and compliance in children and adults with newly treated attention-deficit/hyperactivity disorder. J Manag Care Pharm 10, 122-129
- 20. Qiu, M.G., Ye, Z., Li, Q.Y., Liu, G.J., Xie, B., and Wang, J. (2011) Changes of brain structure and function in ADHD children. Brain Topogr 24, 243-252

- 21. Radonovich, K.J., and Mostofsky, S.H. (2004) Duration judgments in children with ADHD suggest deficient utilization of temporal information rather than general impairment in timing. Child Neuropsychol 10, 162-172
- 22. Satterfield, J.H., Hoppe, C.M., and Schell, A.M. (1982) A prospective study of delinquency in 110 adolescent boys with attention deficit disorder and 88 normal adolescent boys. Am J Psychiatry 139, 795-798
- 23. Shaffer, R.J., Jacokes, L.E., Cassily, J.F., Greenspan, S.I., Tuchman, R.F., and Stemmer, P.J., Jr. (2001) Effect of interactive metronome training on children with ADHD. Am J Occup Ther 55, 155-162
- 24. Sidlauskaite, J., Caeyenberghs, K., Sonuga-Barke, E., Roeyers, H., and Wiersema, J.R. (2015) Wholebrain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global disturbed local network organization. Neuroimage Clin 9, 506-512
- 25. Smith, A., Taylor, E., Rogers, J.W., Newman, S., and Rubia, K. (2002) Evidence for a pure time perception deficit in children with ADHD. J Child Psychol Psychiatry 43, 529-542
- 26. Sonuga-Barke, E., Bitsakou, P., and Thompson, M. (2010) Beyond the dual pathway model: evidence for the dissociation of timing, inhibitory, and delay-related impairments in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49, 345-355
- 27. Sumner, C.R., Haynes, V.S., Teicher, M.H., and Newcorn, J.H. (2010) Does placebo response differ between objective and subjective measures in children with attention-deficit/hyperactivity disorder? Postgrad Med 122, 52-61
- 28. Teicher, M.H., Ito, Y., Glod, C.A., and Barber, N.I. (1996) Objective measurement of hyperactivity and attentional problems in ADHD. J Am Acad Child Adolesc Psychiatry 35, 334-342
- 29. Teicher, M.H., Lowen, S.B., Polcari, A., Foley, M., and McGreenery, C.E. (2004) Novel strategy for the analysis of CPT data provides new insight into the effects of methylphenidate on attentional states in children with ADHD. J Child Adolesc Psychopharmacol 14, 219-232
- 30. Teicher, M.H., Polcari, A., Anderson, C.M., Andersen, S.L., Lowen, S.B., and Navalta, C.P. (2003) Rate dependency revisited: understanding the effects of methylphenidate in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 13, 41-52
- 31. Teicher, M.H., Polcari, A., Foley, M., Valente, E., McGreenery, C.E., Chang, W.W., McKay, G., and Midha, K.K. (2006) Methylphenidate blood levels and therapeutic response in children with attention-deficit hyperactivity disorder: I. Effects of different dosing regimens. J Child Adolesc Psychopharmacol 16, 416-431
- 32. Teicher, M.H., Polcari, A., and McGreenery, C.E. (2008) Utility of objective measures of activity and attention in the assessment of therapeutic response to stimulants in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 18, 265-270
- 33. Toplak, M.E., and Tannock, R. (2005) Time perception: modality and duration effects in attention-deficit/hyperactivity disorder (ADHD). J Abnorm Child Psychol 33, 639-654
- 34. Valera, E.M., Faraone, S.V., Murray, K.E., and Seidman, L.J. (2007) Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 61, 1361-1369
- 35. Weiss, G. (1985) Followup studies on outcome of hyperactive children. Psychopharmacol Bull 21, 169-177
- 36. Wolf, R.C., Plichta, M.M., Sambataro, F., Fallgatter, A.J., Jacob, C., Lesch, K.P., Herrmann, M.J., Schonfeldt-Lecuona, C., Connemann, B.J., Gron, G., and Vasic, N. (2009) Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30, 2252-2266
- 37. Yang, B., Chan, R.C., Zou, X., Jing, J., Mai, J., and Li, J. (2007) Time perception deficit in children with ADHD. Brain Res 1170, 90-96
- 38. Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian, L.X., Jiang, T.Z., and Wang, Y.F. (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29, 83-91